Pokročilé metody analýzy dat a neuronové sítě: Aplikace v praxi

Kurz nabízí účastníkům komplexní vhled do pokročilých metod analýzy dat a neuronových sítí a jejich praktického využití. Zahrnuje sofistikované techniky analýzy dat, jako je shluková analýza a rozpoznávání vzorů pomocí neuronových sítí. Účastníci se naučí aplikovat analýzu hlavních komponent, která umožňuje identifikaci klíčových charakteristik datových souborů a redukci jejich dimenzionality. Dále se seznámí s algoritmy jako jsou support vector machine (SVM) a k-nejbližších sousedů, které jsou vhodné pro řešení klasifikačních problémů.

V kurzu budou také účastníkům představeny hluboké neuronové sítě s důrazem na predikci časových řad a analýzu vícerozměrných dat. Účastníci se seznámí s řadou aktuálně využívaných architektur hlubokých neuronových sítí a naučí se je využívat pro analýzu jejich vlastních datových sad. Důležitou součástí kurzu je také validace a vyhodnocování přesnosti klasifikace a predikce pomocí neuronových sítí. Účastníci se naučí, jak správně nastavit a vyhodnotit výkonnostní metriky svých modelů a jak efektivně využívat různé techniky validace a optimalizace.

Celkově kurz umožňuje účastníkům získat hlubší porozumění pokročilým metodám analýzy dat a neuronovým sítím a získat praktické dovednosti pro jejich aplikaci v různých oblastech, od průmyslových aplikací po vědecký výzkum. Tím účastníkům poskytuje potřebné znalosti a dovednosti pro úspěšnou práci v oblasti analýzy dat a umělé inteligence.